
. F . .  

READ INSTRUCTIONS 
BEFORE COMPLETING FORM a 

ACCESSION #O. 3. RECIPIENT'S CATALOG NUM@tA 
4 

- - 

. T I T L E  (md SubtlfleJ 
. -.-.. -._ . _ 

OF 4LGEBRAIC GEOMETRY 
.I 

.i ---..----..-urn- . - .----- A* 

. AuTI(OR(eJ W - T  twmelmp). 

. --- - - -  

I. ~ M I N G  ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK 
AREA 4 WORK UNIT NUMBERS 

Brown University, Division of Applied Math. 
Lefschetz Center for Dvnamical Svstems~' 

- - 
1. CONTROLLING OF FlCE NAME AND ADDRESS 

Air Force Office of Scientifis Research/NM 
Bolling AFB, Washington, DC 20332 

4 1 . ?- '* 

14. MONITORING AGENCY N &ME L A~~R-I.-= yla,rtr&p Ottice> I 1s. SECURITY CLTE (01 

Approved for public release; distribution unlimited. 

17. DISTRIBUT~ON STATEMENT (01 the &.tract entered I n  Block 20. 11 d i i fermt  from Report) 

18. SUPPLEMENTARY NOTES 

19. KEY WOROS (Continue on reverse s ~ d e  il neceesery and identlfy by block number) 

\ 
20. STPCCT (Cnntlnue an revcrae mide 11 nccssmery end Identi ly by block number) 

'Systsn theory is concerned with the niodelling and analysis of 
phenomena both natural and man-made. It is a discipline whose 
formal beginnings go back at least to Watt and Maxwell and much of 
its motivation stems from engineering problems. Before World War 
11, a system design and analysis were primarily an art. During 
and after the war, techniques based on complex variable theory wen 
developed and applied primarily to single input, single output 
systems represented by a rational -- - function, called the transfer .---- A- - 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE ( m e n  be fa  Entered) 



*t - ----- - - " - ~ ~ ~ - . . - , " * -  --,.- .-.- --.. _ .-.---* " " - -  
t >' C L I \ . , A I I  t b ~ :  l 3N  2 O X , ,  :A..I , 1 .16 . .  . . _ ,. . - 4 

20. Abstract continued. r 
function. The theory of scrvomechanisms developed rapidly from 
the end of the war to the early fifties and time-domain methods 
were applied. The reprcsentation of transfer functions via linear, 
constant-coefficient, differential equations led to. a renewed 
interest in so-called state space methods. The rapid development 
of the theory followed and continues today. However, the increas- 
ing complexity of the engineering and economic problems considered 
required greater mathematical sophistica.cion. Little did one of 
the authors dream while he was a student of ofessor Zarisski, 
-that the techniques of modern algebraic geomet y could (and would) 
be applied in a critical and essential way in s stem theory. Our 
purpose, in this paper, is to illustrate severa, of the many 
applications of algebraic geometry to linear 2 sys em theory. These 
applications are both mathematically and practicafly non-trivial. 

UNCLASSIFIEL 
SECURITY CLASSIFICATION OF THIS PAGEIWhm Def. Enlerod) 

. . . 



AFOSR-TR- 7 8 - 15 1 6  

APPLICATIONS OF ALGEBRAIC GEOMETRY 

IN 

SYSTEM THEORY 

Dedicated to Professor Oscar Zariski on the 

occasion of his eightieth birthday 

t 
Christopher I. Byrnes and Peter L. ~alb' 

* c k f i c &  m a - : .  - * . ' ""i06 Division of %nbine&ring % i d i ~ P ~ ~  iecf Physics and Department of 
Mathemarics, Harvard University, Cambridge, Messachusetts, 02138. 
This work was supported by NASA under rant NSG-2265 and by the 
Office of Naval Research under JSEP-NO 8 014-75-C-0648. 

4 
- 

Division of Applied Mathematics, Brown University, Providence, 
Rhode Island, 02912. This work was supported by the Air Force 
Office of Scientific Research under AF-AEOSR 77-3182. 

Approved for pub110 pgleme; 
distribution  whit^. 



1. Introduction 

System theory is concerned with the modelling and analysis 

of phenomena both natural and man-made. It is a discipline whose 

formal beginnings go back 2 . t  least to Watt and Maxwell and much 

of its motivation stems from engineering problems. Before World i, 

War 11, a system design and analysis were primarily an art. During i 

and after the war, techniques based on complex variable theory were 
4 

developed and applied primarily to single input, single output 
-- - 

systems represented by a rational function, called the transfer 

function. The thecry of serv~mechanisms developed rapidly from 

the end of the war to the early fifties and time-domain methods were 

applied. The representation of transfer functions via linear, 

constant-coefficient, differential equations led to a renewed 

interest in so-called state spp.ce methods. The rapid development 

of the theory followed and continues today. However, the increasing 

complexity of the engineering and economic problems considered 

required greater mathematical sophistication. Little did one of 

the authors dream while he was a student of Professor Zariski, that 

the techniques of modern algebraic geometry could (and would) be 

applied in a critical and essential way in system theory. Our 

purpose, in this paper, is to illustrate several of the many applica- 

tions of algebraic geometry to linear system theory, These 

applications are both mathematically and practically non-trivial. 

We begin, in Section 2, with an analysis of two (.classical) 

questions; namely, (-i) when is a meromorphic function of the form 
OD 

fcs) - 1 hLs '"ational?, and, (ii) when is such a rational function . 

a=i 



stable (i.e. has poles in the left-halZ plane)? The first question 

was answered by Hankel ([201) and the second was answered by Cauchy, 

Hermite, Routh and Hurwitz ([IS], [29], [30]). Our treatment serves 

to motivate the subsequent development. The concept of a time- 

invariant, finite-dimensional linear system is introduced in 

Section 3. Such systems admit an external description as either a 

matrix, T(s), of rational functions or as an input-output map 
a, 

f(s) = E L ~ S  
- R  with the Lt constant matrices and rank Hz < - 

A= 1 

where Hf = (Li+j-l ) is the Hankel matrix of f. Corresponding to 

each external description is an internal description or representation. 

Thus, a pair of polynomial matrices (R(s) ,P(s)) realizes T(s) 

if T(s) = R(S)P-'(s) and R(s) ,P(s) are relatively right prime. 

The group 9 of polynomial matrices with determinant a unit 

acts on such realizations. For an input-output map f, a triple 

(A,B,C) of constant matrices represents f if Hf = ( c A ~ * ~  "B) . 
The general linear group G (of appropriate dimension) acts on 

such triples via go (A,B,C) = (g~g" ,g~,~g-'). Three main topics 

are treated in Section 4. The first is the construction of a 

moduli space for linear systems under the action of G and a proof 

of a theorem on "realization with parameters", based on Zariski's 

Main Theorem and Mumford's geometric invariant theory. It turns 

out that the ltexceptional points" are precisely the representations 

that are undersirable from a practical viewpoint. Thus, the mathe- 

matical and physical considerations are exactly congruent. The 

second topic is a brief study of the biregular and topologicai 

invariants of the moduli space with an emphasis on the impact these 

invariants have on system theoretic questions analogous to the 



! 
questions raised in Section 2. The third topic is the considera- 

- 

tion of moduli spaces for systems with richer symmetries such as 

Hamiltonian or symmetric systems. In fact, we sketch the 

equivalence between an old problem in network theory ( [ 5 3 ] )  and 

what might be called the "serre conjecture for quadratic modules". 

Recent results on quadratic iaodules ([I]) are precisely what is 

needed for the solution of the network theory problem. The vital 

concept of feedback is considered in Section 5 together with its 

relation to the problem of pole placement (stabilization) or co- 

efficient assignment. Equivalence under feedback 5nvolves the 

action of a group which is not reductive. Nonetheless, a moduli 

space can be constructed and its invariants calculated. For son- 

trollable systems, the result can be found in [7], [ 2 8 ] ,  [32]  and 

[ 4 2 ] .  The general case is completely analyzed in [19]. It 

should also be possible to extend Mumford's geometric invariant 

theory to groups of feedback type. A critical portion of the 

feedback invariants is the Kronecker set of indices ( K ~ ,  ..., K ~ )  

where the ri are non-negative integers. This set was used to 

define an ordering for systems by Rosenbrock [ [ 4 2 ] ) .  It turns 

out that this ordering is precisely the Harder-Narasimhan ordering 

[ [4S l )  and we conclude with an indication of the use of this 

complex of ideas in system theoretic problems. We hope to indicate 

throughout the richness of the relationship between algebraic 

geometry and system theory both in terms of the application of 

algebraic geometry to system theory and in terms of the generation 

of problems in algebraic geometry from the practical considerations 

of system theory. 



2. Routh-Hurwitz Theory 

We begin by considering two questions, which were posed and 

solved in the lgth century by Cauchy, Hankel, Hermite, Hurwitz, 

Maxwell, Routh and others, and which now form part of the folklore 

of linear system theory. 

Question 1. When is a proper (i.e., vanishing at ) meromorphic 

function f on C rational? 

In fact, we can ask the same questions for proper, matrix- 

Question 2. If such an f is real, when do its potes lie in the 

left-half plane? 

valued meromorphic functions and, as a motivating example, consider 

the resolvent or transfer function, f (s) = (SI-F) -I, of a differential 
d equation, (;IF - F)x = 0. This is still more interesting in the 

control system case (see Section 3), but serves to explain Maxwell's 

interest (1381) in such questions. Question 1 can be thought of 

in terms of an algebro-geometric classification of differential 

equations, whereas Question 2 characterizes asymptotic stability. 

One approach to Question 1, due to Hankel ( [20J), is to form 

the matrix, Hf = (hi,j , where ha is given by 

Hankel's Theorem then asserts: f is rational if, and only if, 

rank Hf - n < m, as one can plainly see. In this case, f induces 

a holomorphic map 



whose degree is given by 

degCf = rank(Hf) . 

Now, in case f is real, we can restrict 

and, since f I+ Hf is bijective, we can ask for degIRf in terms s 

of Hf. In this way, we obtain the beautiful result which underlies , . 

the Routh-Hurwitz conditions: 

i: 
Theorem 2.5 (Hermite-Hurwit z) degN f = signature (Hf) . !I 

i 

f 
ir 

This was discovered by Hermite in 1856 (129 I )  in case f has I 
i 

distinct poles, and later extended by Hurwitz. Of course, degpf [: 
was expressed in a different way: 

Definition 2.6 (Cauchy) The local index of a real ,  rational f at 

a real pole xo is +1 if f changes from +- to --, -1 if 
the alternate change occurs, a ~ d  0 if f does not change sign 

while passing though xu. The index of f, C(f), is the sum of the 

local indices. 

C(f), which is clearly the winding number of the map in (2.4), 

was defined by Cauchy in [ 15 1  . In part I of [ 15 ] , he uses the 



Caucby index to compute the number of real roots of a real poly- 

nomial (generalizing, among other things, Descartes' rule of signs), 

the number of negative real roots, and related questions. In part 

II,he uses the Cauchy index to define and evaluate the local index 

of a non-degenerate plane vector field at an equilibrium point. Of 

course, this latter application was generalized by Kronecker, for 

n > 2, and others. On the other hand, the computation of the number 

of negative real zeroes of a polynomial is a bit harder than 

Question 2 and this computation was, in fact, the starting point 

for Hurwitz in [ 301. Following 1301, we assume for the moment 

that f has no poles an the imzginary axis. Thus, if g is the 

monic denominator of f, having no roots in common with the 

associated numerator h, computing the change in arg g(-is), s between 

+- and --, is equivalent to computing p - q, the number o£.zeroes 
in the left-half plane minus the number of zeroes in the right- 

half plane. This is, by trigonometry, the Cauchy index of the 

rational function v/u where 

cg(-is) = (u+iv) (s) , 

and c is a complex constant rendering v/u proper. By the 

Hermite-Hurwitz Theorem, 

- q = sign H&Y. 

Thus, by the Jacobi-Frobenius algorithm, one obtains numeric 

criteria [in terms of the coefficients of g!) for Question 2; i.e., 

for g to be a Hurwitz polynomial. Explicitly, this is 



2-4 14 1' 
I $ 

positive-definiteness of a quadratic form, and one should stress 1 ! 

that it is a known fact in the folklore that Hulv is intimately 
d related to a Liapunov function for g(=)x = 0. In fact, this is 

very much the spirit of Hermite's treatinent. 

We close the section by sketching a moduli-theoretic procf of  

Theorem 2.5, due to R. W. Brockett ( [  21). With the rrctati - as 
above, consider 

2 n As the colocus of the resultant, Rat(n) is Zariski open in IR , 

"he Euclidean topology being the same as the compact-open topology 

on the maps (2.4). In particular, the Cauchy index p - q is constant 
, . 

on Euclidean components of Rat(n) and there are at least n + 1 

of these. By continuity, sign(Hf) is constant on components of 

Rat (n) , in light of (2.3) . Thus, already, a general position 

argument reduces Theorem 2.5 to the result obtained by Hermite. 

Indeed, if Rat[p,q) is the submanifold on which the Cauchy index 
I 

is p - q, then, by a somewhat tedious but intuitive canonical 
, . 

form argument based on divisors, Brockett proved 

Theorem2.8. Rat('y,q) i,s connected. 

Jt is entirely trivial to evaluate the induced bijection between 

values of the Cauchy index and the signature of Hf. This yields ,. . 

Theorem 2.5 as well as some insight into the ~lobal structure of 

Ratcn) (i.e., of scalar input-output linear systems). It is very 



nat~ral then to study the topology of the submanifolds, Rat(p,q~ C: 

(sl). For example, based on unpublished work of R. Brockett 
n ~ - 9  
and G. Segal, one can show that sach Rat(p,q) can be given the 

structure of a Stein manifold and, in particular, deduce the 

vanishing of its higher cohomology groups. Their work also shows 

that Rat[p,q) is simply connected only in case either p = n, 
2 n or q = n, in which case Rat (n, 0) - Rat (0 ,n) - IR . It is also 

known that Rat (n-1,l) = Rat (I ,n-1) - s1 x R 2n-1 (see 2 I ) .  In 

another direction ( [ 13 ] ) , from all of. the above, we can construct 

a vector bundle V+ on Rat(p ,q) , obtained by ~ssigning the 

positive eigenspace of Hf to f E Rat@,q). This is, in general, 

non-trivial. For example, on Rat(1,1), V+ induces a classifying map 

which is not homotopic to a canstant map. Indeed ([ZI), under 
3 the isomprphism Rat (1,l) - s1 A , T+ is just projection on 

the first factor. In section four, we will iiiterpret these 

obstructions in a system-theoretic context, 



3. Linear Systems 

The class of systems which we consider is the class of finite- 

dimensional, linear time-invariant multivariable systems. Such 

systems can be characterized via an external intrinsic description 

using either the transfer matrix or an input-output mapping. 

Associated with each description is an internal represe2tzition and 

an appropriate notion of equivalence which is defined by the action 

of an algebraic group. The critical link between these descriptions 

is provided by (a generalization of) Hankel1s Theorem on the 

rationality of proper matrix valued "meromorphic" functions. 

Now let - R be a Noetherian integral domain which is intezrally 

closed in its quotient field - K and let R[s] be a polynomial ring - 
in s over - R. We call an element n(s)/d(s) of K(s) proper - 
if degree n(s) < degree d(s). Let M ( - )  denote the set of 

P Y ~  
p x m matrices with entries in . . Then we have: 

Definition 3.1. Let C = { T ( s )  E M (K(s))lthe entries tij(s) 
P 9" p,m - 

of TCs) are proper). Elements of C are called proper transfer 
P sm .- 

matrices. 

Definition 3.2. Let T(s) be an element of C A paii- 
p,m* 

(RCs) ,Y(s)) with R ( s )  E M (K[sl) and P(s) an invertible element 
p,m - - 

of %,,(&b] is called a representation of TCs) i f  

T(s) = R(S)P-'(s). A representation is called a realization (or 

minimal represmtation) of T(s) if R(s) and P(s) are relatively 

right prime. 

If TCs) s c then, lettin2 A s )  be the (monic) least 
p,m' 

common multiple of the denominators oi the entries tij (s) of '('1 9 



we have T(s) = R(S)P-'(s) wher; R(s) = To + Tls + --• -> T n-1 
n-lS 

P ( s )  = A(s)I, and so, representations exist. Moreover, let .- 

%, = W(s) E I$, ,(g[sl): det U(s) is a unit i.e., a non-zero ele- 
9 

ment of - 1 .  Notr that f$, is an algebraic group which acts on 

pairs ( R ( s )  ,P(s)) via right multiplication a3d preserves. the 

property of being relatively right prime. We now have: 

'Ehsomm. 3.3. Given T(s) E T there exist realizations of T(s) 
P ,mt 

and any two realizations are equivalent under the action of 4. 
<For a proof, see [18] , [49]  . ) 

Let T(s) be an element of C and let J~(s) be an element : 
P sm 

of Mp+m,m (Kbl) which corresponds to T (s) . In other words, nT(s) 

(K[sl) such that s = with is an element of M p+m,m - 

%(s) ,PT(s) relatively right prime and T(s) = R~(S)P;'(S). Any 

such uT(s) is called a linear system with transfer ratrix T(s) . 
If C is viewed in this way, then C is stable under th:: 

P sm P ,m 
action of %,,, and the orbits correspond to the transfer matrices. 

More precisely, if S (K [sl p,m Mp+m,m - is the set of all linear 

systems, then S is stable under the action of @ and the 
P,'" 

transfer matrix is a complete invariant for this action. These 

results can be interpreted in still another way which is frequently 

useful in applications. Namely, let ~(s) be an element of S 
P ?=' 

and let a. (s) be the jth column of u(s). Then al(s), . . . ,a,,,(s) 3 
are free over - K[s] and we let Ma be the free module with 

generatars u 1 s  , . . . , u s )  Mu is called the system module of 

o(s) and is also a complete invariant for the action of %. 



If U[s] = , then na = degrze det PJs) is called the 

McMillan degree ot - u(s) and n, is also an invarient for the 

action of 9,. It is rather tempting to heuristically view 

(R,(s),P,(s)) as "homogeneous coordinates" relative to multiplica- 

tion by U(s) in Indeed, in the scalar case (p = m = l), 

this is expressed in (2.2j. More p?-ecisely, ~ ( s )  induces a map T, 
of P' into GrassK(m,n+p) given by - 

for s f - and by - lCrn for s = -. T is essentially the graph 
-0 

of T,(s) by virtue of the fact that Z,(s),P,(s) are relatively 

right prime ( [271  ). In addition, if - K is algebraically closed, 

then (2.3) generalizes also to the following 

which was first proved over C by Hermann and Martin ([27j). We 

shall soon see that no is also the rank of a Hankel matrix. 

Ws now turn our attention to the alternate external 

description of linear systems. Consider the (formal) Laurent series 

where LL € M (D. We associate with f the (generalized) 
P P ~  

Hankel matrix 



and we have: 

Definition 3.8. f is admissible if rank Hf = nf < rn. Let 

zf = {f(s)l f is admissible). Elements of C are called 
P s ~  Psm 
proper input-output maps and nf is called the dimension of f. 

Definition 3.9. Let f(s) be an element of X A triple 
P ,m' 

(A,B,C) with A E M (E), B E M (g), C r is called 
n,n n ,m 

a representation of f(s) if CA J1-lB = Lk for a = 1, ... . A 
representation is called a realization (or minimal representation) 

Definition 3.10. A representation (A,B,C) of f (s) is called 

controllable if rank Y(A,B, C) = rank [B ,AB, . . . ,A"-'BI = n and 

a representation (A,B,C) of f(s) is called observable if 

rank @(A,B,C) = rank[C',AIC', . . . , (A1) n-lCq = n 

i 

If f (s) is a proper input-output map, then it is well-known i 
! 

that representations and realizations exist (1331). Moreover, if 
- 1 (A,B,C) is a representation of f (s) , then C(s1-A) B = Tf(s) 

is an element of C and (A,B,t) can be called a state-space 
Pya 

representation of Tf(s). Similarly, if (A,B,C) is a realization 

of f(s), then ~(sl-.A) "B = Tf(s) is an element of Z .nd 
P ,m 

(A,B,C) is called a state-space realization of Tf (s) . Thus, 
there is a natural mapping of C into 2 and it can be P 9m P 9'" 
shown that this mapping is bijective by virtue of Hankel1s 

Theorem ([201) . 



Now, if (A,BsC) is a triple with A E M (9, B E Mn,,,(KJ 
n,n 

C s M (Kj, then GL(n,K) - acts on (A,B,C) in the following , I. - 
P+ - i s  

I ,  

way: (A,B,C) + (g~~'~,~B,~g-l), g E GL(n,s]. It is clear t h r t  : .  i : 

controllability and observability are preserved under this action. I 

i 

We now have: ! .  I .  

f I .  Theorem 3.11. Given f (s) E C (or, equivalently, Tf(s) E Z 
P ,m p,m) ' I I 

there exist realizations of fis) (state-space realizations of I 

Tf(s)) and any two realizations are equivalent under the action of 

GL(nf,g). Moreover, any realization of f(s) is both controllable 

and observable. Finally, if (A,B,C) and (A,B1Cl) are 

realizations of f ( s ) ,  then the g o GL(nf,K) - such that (g~g-',g~,~g-') 

= (AlsB1,C1) is unique. 

(For a proof, see [ 3 1, 1171 1. 

The final part of Theorem 3.11 is often referred to as the 

state-space isomorphism theorem. 

So, let f (s) e C andlet (A,B,C) beanelementof 
2 P S ~  
nf +nf ("+PI 2 

A (5) = A +n(m+p) which corresponds to f (s) . In other 
'I 

words, (A,B,C) is an element of such that (A,d,C) 

is both controllable and observable and Tf(i) = C(SI-A)-'B and 
OD 

a-1 -a f (s) = 1 (CA B) s . Any such triple (A,B,C) is called s. 
8-1 

linear system with input -output map f (s) . Let S" be the set 
P ,* 

of all linear systems of dimension n. Then sn is stable under 
P 3"' 

the action of GL(n,K) - and the orbits correspond to the proper 

input-output maps of dimension n. in the next seftion, we shall 

characterize the moduli space of sn under this action. Finally, 
P?"' 

we remark that the dimension of f(s) is precisely the McMillan 



degree of Tf(s) . 
So far, we have considered notions of equivalence based on 

classical groups such as am and " %L (n , - K) . However, in 

Section 5, we will examine the critecal concept of feedback . 

equivalence. This notion requires, amongst other things, an 

additional set of invariants known as the Kronecker indices (D41, 

1321) which we now introduce in two ways. 

If P(s) r Mm,,(E[sl), then let K~ (P) = max degree{p i j (s) 

i = 1,. . .,m) be the jth column degree of P(s) so that P(s) can 

be written in the form 

where K P ) < K (P) and Ac (P) E N ( . P(s) is called 
3 1 J m,m r 1 

column proper if Ac(P) E GL(m,K) - . If o = o(s) = 

is aT element of S then it is well-known that there is a 
p,m' 

U ( s )  9m such that P,(s)U(s) is column proper ( [  I ) .  We now 

have : 

Defirlition 3.13. Let a be an element of S - 7 -  

and let P(s) be 
P?m 

a -.l;lumn proper element of M (K[sl) such that P(s) = P,(s)'J(s) m,m - 
for some U s )  . Then the set of integers K~ = { K~ (P) , . . . , tcm(P) 1 

is called the Kronecker set of a. 

Theorem 3.14. Let a be an element of S - Then (i) K, is 
p,m' 

well-defined, and (ii) if T = aU for some U E 9m, then 



r = K (as sets). (i.. , K is an invariant for the action of 
Q T 

9, on S ). 
P s"' 

Alternatively, in state-space form, let (A,B,C) be con- 

trollable so that rank [B ,AB, . . . , A~-'BI = n. Then it is possible 

to 1exi:ographically order the first n linearly independent 
K -1 

columns of [B,AB, . . . ,A"-~B] as follows: bl,Abl,. . . ,A 1 
K -1 K -1 m 

bl' 
2 bZ, ..., A bZ, ..., A b, wheie bl, ..., bm are the columns of Bt 

The set of integers K = ( ,  ) is called the Kronecker set of 

(A,B,C). It can be shown that K is an inva~iant under the action 

of GL(n,K) ( [  7 1 ) .  For example, if we consider the pencil 

[A-s1,BI , then equivalence under GL(n,K) - induces a strict 

equivalence (in the classical sense of Kronecker [ I )  of pencils 

and the integers (K, ) are a complete invariant for strict 

equivalence of pencils. Explicitly, following Kronecker, the K i  

may be computed by the process: choose 41(s) E Ker[A-sI,B]@K - 
of minimal degree rl in s then choose 0 2(s) E Ker [A-sI ,B] O K  

j - 9 

independent of Ol(s), and of minimal degree r2 among all such 

+(s), etc. (cf. [ 10 I). We also have: 

Theorem 3.15. Let (A,B,C) be a state-space realization of T(s) 

and let ~ ( s )  be a realization of T(s). Then the Kronecker sets 

are the same. 

(For a proof, see 1181 and 1191 .) 

We note that, for ease of exposition, we have worked over the 

quotient field - K of - R. However, if the data were defined over ll, 

then the realization problem is essentially a question of rationality 

which accounts for the assumption of integral closure. Thus, the 

results presented here hold with data in - R (see, 1433, [44:, [471). ; 



4. Classical Groups of Symmetry and Moduli for Linear Systems 

There are three main topics covered here. The first is the 

construction, in external and in internal terms, of the moduli space 

for linear systems and a proof of the theorem on "realization with 

parametersw, which is based on Zariski's Main Theorem. The second 

is a brief survey of biregular and topological invariants of the 

moduli space, with emphasis on the impact these invariants have on 

system theory, as in Section 2. We close by considering moduli 

for systems having richer external symmetries, such as Hamiltonian 

systems or systems describing symmetric electrical networks. Here 

we see a more arithmetic side come to the foreground, and in fact 

we sketch the equivalence between an old problem in network synthesis 

and what might be called the "Serre conjecture for quadratic modules". 

In particular, recent results on quadratic modules ([I]) turn out 

to be sufficient for the classical formulation of this problem. 

Now, over IR or C, it is natural to view the set of transfer 

functions with m inputs, p outputs, and fixed McMillan degree n 

as a (complete) metric space. Indeed, this topology ([131) is 

simply the compact-open topology on transfe- functions, regarded 

as maps 

as in (3.4). Although such a description is in fact useful in 

certain contexts, it is not entirely clear that this space is an 

algebraic variety, nor is it even clear what its dimension should be. 

For this reason, the first problem we consider is to construct, as 



explicitly as possible, a moduli space f o ~  the action of GL(n,k) - 
on sn In fact, since it is rather important as a classifying 

P ,me 
space for families of linear systems, it is rather crucial that we 

construct a fine moduli space. This is done in several stages, it 

turns out (by universality) to be sufficient to construct a geometric 
I c quotient for the action of GL(n,k) - on controllable pairs (A,B) 

2 
in r\" *m. This is done within the context of geometric invariant 
theory, the rather remarkable result being that the properly stable 

2 
points in +nm , relative to the standard character linearization, 

* is precisely the space of controllable pairs!. We start birationally. 

First of all, the corresponding space H of Hankel's is clearly 
N a quasi-affine variety, contained in /A , for N = mp(n+l). This 

was shown to be non-singular by J.M.C. Clark ([161) and, in addition, 

his proof shows .chat H is a special variety, in the sense of 

Chevalley. In particular,H is rational and one can easily write 

down generators for the function field . On the other hand, if 

R = k[A,B,C], K the field of fractions of R, then Falb has shown - - - - 

This follows from the statement that the ring of invariant 

regular functions defined on the Zariski open subspace of semi-simple 

A is generated by the entries of the Hankel. This is proved, 

r-- - 
The birational situation using these ideas was sketched in [I81 and 
the entire theory fully developed in [lo], 
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for B and C vectors, by Gurevitch - as an illustration of the 
s-jmbolic method! It is proved in general in [18]. 

The biregular situation involves a bit more care - this is 
due to several people (e.g. [141, [261)  and our treatment follows - 
( I141). relying on I401 . It can be shown that, if Z0 is the 

2 
Zariski open subspace of A n +nm of controllable pairs and if Ro .. 
is the ring of regular functions on EO, then in contrast to 

.* 

Proposition 5.1, Ro GL(n9k) does not separate orbits in TO, unless 

m = 1. In fact, if - k is algebraically closed, 

where (ci) denote the chal;cteristic coefficients of A .  In 

particular, aithough Theorem 3.9 implies that the orbits in f0 
are closed, an sffine quotient does not exist, unless m = 1. 

However, we do have: 

- 
Theorem 4.3. - Co + E is a universal geometric quotient, with ZO 0 
a quasiprojective, non-singular, irreducible variety of 

dimens ion nm . 

Sketch of Proof. Following [40] , since (4.2) implies that the - 
set of properly stable points for the trivial character 

(pic(tO) = (0)!) is empty, we compute the properly stable points 

for the relative invariants of weight 1. Here we find a surprisingly 

pleasant result: 



Proposition 4.4. The set of properly stable points, relative to 
..) 

det(*), in A is exactly x0. 

- 
This is very much related to the fact that P o  is the principal 

orbit type for the action. In the scalar input case, this can be 

proved by linear algebra, one direction being already implied by 

the proof of the state-space isomorphism theorem. For the other 

half, to say [A,B) is in the principal orbit type is to say, by 

differentiating the action, 

n2 = 

where ZCA) 

dim @(A,B) = dim @A + dim Z(A)B, (4 5) 

is the centralizer of A and @ denotes the orbit 

of . Now, (4.5) can be refined since 

2 dim @A n - n and dim Z(A)B! n 14.6)  

2 holds for any A. Thus, dim BA = n - n is maximal and A there- 

fore possesses a cyclic vector. By Frobenius's Theorem, Z(A) = k[A] 

and thus 

dim Z(A)B = diui k[A]B = rank(B, AB,. . . ,A"-~B) = n, 

which was to be shown. The multivariable case also follows from 

linear algebra (.see a41 ) . 
Asswring Proposition 4.4, Theorem 4.3 follows from Mumford's 

Theorem ( PO] , Theorem 1.19) . 



By universality, a geometric quotient for the twisted action - 
of GL(n,k) - on C = {(A,B,C): (A,B] controllable) exists and 

P 
shares many of the same properties. In fact, Cp + C o  is a? 

algebraic vector bundle with base Co and fiber - 
quotient, C + C is geometric, we also obtain a 

P P 
, for the Zariski open subspace sn C f 

P 3m P. 

Theorem 4.7. A fine moduli space for state-space 

knp. Since thc 

quotient Cn 
P 9m 

equivalence in 

sn exists. Moreover, Cn is a rational, smooth, irreducible 
P ,m P ,m 
quasiprojective variety of dimension n(m+p). 

The construction of a universal family of systems on Lo 

was carried out in [26] and extended to C" in [lo] . Thus, any 
P sm 

map f: X + Cn induces a linear system defined over the 
PI" 

coordinate ring R of X. This, of course, extends to the study 

of differentiable or continuous families as well. 

Theorem 4.8. If H(x) is a regular Hankel matrix, of locally 

constant rank on X, then H(x) is salizable over R, with 

finitely generated, projective state module. 

Proof. After all of the above, including the existence of a - 
universal family, i.e. a vector bundle Q - the state bundle, an 
endomorphism of Q, and sections and co-sections Bi, gj , 

resp., this amounts to proving that realization is, in fact, 

algebraic in its parameters [see [25] , [l4j]. That is, if n is 

the natural map 



we claim n is biregular. By Theorem 3.9, ri is bijective and 

by Proposition 4.1 n is birational. By Clark's Theorem, H 

normal and thus is biregular by Zariskils Main Theorem. 

the assumption on H[x) is simply that H define a map to 

is 

Finally, 

Pi. 

a 

realization (A(z) ,B(z) ,C(.z)) summable in z E it. If we ask that 

the dual system be minimal too, the following sufficient condition 

[see [lo], [46]) becomes necessary. 

(T) the closed linear span of detch..) and its translates 
13 

is ilcz). 

Indeed, Fourier transforming and using th.e Tauberian Theorem, 

we obtain a continuous map 

n 
1 and, thus, a linear system ( R , 8 , ? )  defined over a (.Z), since r~ -1 

is analytic. Now, the state module is trivial over c(sl), for 

topological reasons, and the Docquier-Grauert Theorem asserts that 
A 
1 the corresponding bundle can even be trkvialized over R (Z)! In 

particular, we obtain a realization, in matrix form, by inverting 

the Fourier transform. Recent work by M.Hazewinke1 on constructing 

partial compactifications for 8" suggests that we may be able to 
P ,m' 

drop the hypothesis on the Hankel. 
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9i s 
2 '. We stress the fact that the computation made above actually 
< i 

1 i depends cn the topology of S ; for example, it can be shown that . j % . 

N there exists P C 1" of codimension n(p+l) , over which the i ; 
psm' : m 

universal family is non-trivial. This is, of course, very much 

related to the existence of algebraic (or continuous) canonical 

forms - a problem which has received a great deal of attention. 
Now, Mumford's Theorem yields an actual imbedding of IO in 

pH; i . e .  a very ample line bundle L on ZO. L also arises in 

another way, viz. L = nnzl, as one can see by checking cocycles 

(c.f. [141, Section 4), and thus L is associated to the principal 
... 

GL(n,k)--bundle, - Co - IO. Furthermore, L cannot be trivial if 

m > 1, by (4.2). If m = 1, Co =A" by the existence of the 

rational canonical form. The more precise results for m > 1 are: 

Theorem 4.12. If k is algebraically ~losed, Pic(Eo) = (L) = Z 

and there exist no algebraic canonical forms, If k = C, then the 

Betti numbers BZi do not vanish, for i = 0, ..., rim - n and 

continuous canonical forms do not exist. 

- 
Sketch of Proof. Since Lo + IO is an algebraic principal 

GL(n,k) -bundle, one can conjugate Pic(z0) by descent (1401, p. 32)  : 

Since pic(tO) = (0). we have a surjection (by the rigidity lemma), 
I 
I 

A 
GL(n,k) + Pic GL(n,k) (to) 



which is injective by (4,Z). In terms of group cohomology, t b i s  

is just the map, 

induced by the inclusion of GL(n,k) - -modules, k* + @:O. If m = 1, 

n-1 the unit det(B,AB, ..., A B) is a coboundary of the character 

det(.)', regarded as a cocycle with value in @* . 
Eo 

As for the topological obstructions, notice that (4.2) asserts 
I 

that pin is the categorical quotient for the action, in the 

category of affine varieties. In particuiar, consid2r the natural 

foliation 

In the codimension 1 case, n = 1 and thus C o  = A 1 . p - 1  while 
-, 

Z 0  + Z0 is the pullback of the universal fibration. This is quite 

general, on a Zariski open subsgace of /An, the leaves are co- 
w dimension n projective spaces, 1P ! Over C, these =an be imbeudad 

non-trivially, giving a proof of the second statenent. Q.E.D. 

Over R, M. Hazewinkel ([24]) has shown that there exist no 

continuous canonical forms, by a clever imbedding of s1 into C o n  

I t  is possible to prove non-vanishing of higher homotopy groups 

in the proper ranges over R and C, by making some crude 

computations along the lines in [Ill, and a2piying Botr Periodicity. 

These computations also show that the natural foliation on I" is 

not, in general, a product of #in with a typical leaf. Of course, 



the situation remains the same for C but C" 
P' 

is a bit more 
P¶m 

elusive. However, the statements about canonical forms still hold, 

answering in the negative - by topological and geometric means - a 
question which many engineers had assumed to h z  evident. This global 

form of the question was originally raised by R. E. Kalman [311. 

For the remainder of the section, we consider the real field 

R, and discuss an application, following [131, of a theorem of 

Harder to a problem in network synthesis, posed by Youla in [531. 

It should be stressed that, even a decade ago, this problem was 

known o be algebro-geometric in nature and, in fact, the partial 

results obtained by Koga ([361) were based on his use of the 

Riemann-Roch theorem for curves to analyze coprime factorizations of 

transfer functions in two variables. 

Now, a result of Glo-.rer ([Zl]) asserts that if m > 1 or p > 1, 

the space H is connected in contrast to Theorem 2.7. This is due 

largely to the fact that, even in case m = p, the Hankel is not 

necessarily s,mmetric and one has more room to move in. However, 

symmetric Hankels or, equivalently, symmetric transfer functions 

are important in network theory (see [6] , [37], [54]). This 

symmetry is displayed in state space-form as: 

I B = C ' ,  
P 9 9 

where I is the standard form of signature p - q. Here p - q 
P P ~  

is the signature of the Hankel and has the same physical significance 



([4]) as the signature of the indefinite metric in the Brayton-Moser 

equations. In fact, the state-space isomorphisn theorem applies here 

to give the group of symmetrices @(p,q) C GL(n;R) (see 1541). 

Moduli for these linear dynamical systems have been studied in [13] 

where, in particular, Theorem 2.7 is shown to hold. The invariant 

playing the role of the Cauchy index is the Maslov index where the 

real Grassmann in (3.4) is replaced by a Lagrangian Grassmann. 

Now, the problem alluded to above is just a question of 

realization with parameters, subject to the symmetry constraints. 

That is, giva a symmetric transfer function involving delays - 

which is simply a transfer function over R kl,. . . ,xNl (I341 , 1351 ) - 
find a symmetric realization. By the vtlidity of the Serre 

conjecture, the state module can be assumed free and the corre- 

sponding question is equivalent ([131) to: 

given a symmetric Yankel with constant rank, defined over. 

R = IR[xl, find a symmetric realization (4.13) over R. 

Since, over IR, this depends only on Sylvester's Theorem, we 

can invoke the following to finish off the problem. 

Theorem [Harder [I]). Any non-degenerate symmetric bilinear form 

defined over k[xl is equivalent to a form defined over k. 

We close by remarking that the general theory of quadratic 

modules arises in several instances, especially in connection with 

families of Hamiltonian systems. Here, again, over IR we have a 

Hamiltonian realization, with symmetry group SpCnJR) and thus the 

moduli problem is already "in canonical formw. 



5. Stabilizatioa and Feedback G r m ~  

To be sure, one of the most important results in deterministic 

control theory is the pole-placement theorem, Theorem 5.2, which is 

concerned with stabilization of linear systems by means of "state 

feedback1' - a topic very much related to the material developed in 
Section 2. It is fair to add, however, that a much deeper under- 

standing of the whole feedback question comes only with the interpre 
N 

tation of feedback substitutions as &art of a group action on A , 
2 N = n + nm + np. Explicitly, for (n,m) fixed we define 

9 = ( n ,  as the semi-direct product of 3 groups, generated by 

the actions on triples (A, B,C) : 

(i) GL(n,k) - acting via change of basis in the state space, 

(ii) GL(m,k) - acting via change of basis ill the input space, 

(iii) ~om(k~,k~) - - acting via (A,B) F+ (A+BF,B). 

I 

This action is more complicated than the action in (i), for both 

mathematical and control-theoretic reasons. That is, is a non- 

reductive extension of GL(n,k) - and, although 9 preserves con- - 
controllability, and hence acts on C 

P' 
9 does not leave the space 

of linear systems, S" invariant. Thus, we begin this section by P sm' 
studying the action 

and extending to the case p > 0. This extension is possible, in 

the sense of constructing moduli, since each of the isotropy sub- 

groups arising in (5.1) is the senidirect product of a reductive 

group with the unipotent radical. We reproduce the theorem of 



4 ' :~ .. for (5.1) - which are arithmetic, cbeing the Kronecker set introduced , 
i' 

in Section 3) - arise as the Birkhoff-Grothendiech invariants of a I \ 1 i 
. . 

bundle on Q'. We extend these considerations to f~milies of 
. . controllable pairs and, following Harder, Narasimhan and Shatz (1451 ' , i ; . -. 
! s 

introduce what might be called the "ubiquitous orderingw on the sst i i 
z .  f .  

of partitions of an integer n. Indeed, this ordering is well-kxovl ? . 
' -: 

< . 

in system theory, having been introduced by Rosenbrock (1421) in his . 

study of the generalized pole-placement theorem, and we briefly 

indicate [based on joint work with C. Martin) how this ckrcle of 
. . 

ideas yields some powerful new tools in the analysis of state 

feedback. 

First of all, recall that the poles of a transfer function TCs) 
. " 

are precisely the roots of xA - the characteristic polynomial of A, 

where [A,B,C) is a linear system realizing T C s ) .  Now, if . , 

n m F 6 Hom(R ,R ), (R a commutative ring with identity) we may regard 
, . 
. . 

the action (iii) of F as feeding back the state of the system as 

a component of the input. In this setting, we ask (overlR) whether , . 
, . 

is a Hurwitz polynomial. there exists an F such that x ~ + ~ ~  
! .. 

More generally, over an arbitrary field k we consider ([Sll): 1: 
Theorem 5.2. Any wnic p(s) ca.. be expressed as x ~ + ~ ~  if, and 

1 
I. 

only if, (A,B) is controllable. 

In the scalar-input case, this result was classically derived 

from the existence of the rational canonical form, and thus holds for 

any ring R. However, for families of systems with m > 1, 

technicalities arising from the non-existence of canonical forms, 



Theorem 4.12, are son-trivial. In fact, a counterexample for the 

general situ2tion has recently reen announced by Bumby and Sontag 

( [ g l ) .  In general, our knowledge for arbitrary coefficient domains 

is very scant and is complete only under strong assumptions on the 

ring and the type of rnonic polynomial considered ([391) or on the 

type of system ([121). 

Nevertheless, we can still glean some insight from the scalar 

inptit case. In terr;;s af  the action [5.1), which is transit$-.-f f - 

this case, we fix (A,B) and consider 

(where ci(-) is the ith characteristic coefficient). Following 
... 

E. Kamen, we note that the image of a is the translation, #. 

(A,W 
by the vector xA, of a linear subspace, so that if we reduce , 

modulo (xA), and supress g and s, the corresponding map 

islinear! If (A*B) = [B,AB, . . . ,A~"B] is the controllability 

operator, then the relationship between 5& and a, i.e. Theorem 5.2, 

Is brought out by the beautif.11 identity due to i3.F. Wyman ([52]): 

coker a = coker~y*) (5. S) 



a 

If the pair (ApB) is controllable over the fraction field of R, f 
the right hand side can be computed in terms of !$', i.e.: 

1 1 Ext R(~~ker %,R) = coker a, Ext R(coker u,R) = coker %. (5.6) 

In particular, if R is a field and if A is semi-simple, ( 5 . 5 )  

contains the folklore result that one carnot change the uncontrollable 

modes by state feedback. That is, if A is diagonal, then any . . 

eigenvalue X i  for which bi is zero must persist in x ~ + ~ ~ .  
In the case, m > 1, if k is algebraically closed and of 

characteristic 0 ,  we can replace a by its Jacobian and thus obtain 

the corresponding generic result from the dominant morphism theorem. 

The computation of the Jacobian, over C, i. due to Hermann and Martin 

( [ 2 7 1 )  and relies on a differential analogue of Proposition 4.4. 

Thus far, the only invariants which we have attached to a 

linear system have been topological, viz. the degree of the associated 

transfer function, 

T: B: + Grass (m,m+p) . k ( 5 . 7 )  

For k = R ,  this defines the Cauchy index if m = p = 1 or else i 
i 

the McMillan degree mod (2) . For k = C, this defines the McMillan I 
i 

degree. However, T is an algebraic map, and as such determines 
* 

finer invariants, namely: the isomorphism class of T U, where U 

is the Calgebro-geometric) universal vector bundle on Grassk(m,m+p). 

By the well-known result of Birkhoff- Grothendieck [and probably 
* 

others!), T U is determined by a partition of degkT into 
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non-negative integers [ni), n1 ? n, ? ... ? nm 
L 

> 0, if k is 

algebraically closed. [If k = W, a theorem of Serre's still gives a 
* 

deco~psiii~n of T U into a sum of line bundles, but these in turn 

I are only determined by integers mod(2);) We owe to Hermann and 1 

I 
I Martin the identification of these geometric invariants ([281): 
I : 

* 
Theorem 5.8. The Birkhoff-Grothendieck invariants of T U are the 

Kronecker set of any minimal realization. 

Sketch of Proof. Since one set of invariants is defined in the 

frequency domain and the other via state-space techniques, the key step 

will involve the Laplace transform. Note that, for constant coefficient 

differential operators, the Laplace transform has its range in a field 

of transcendence degree 1 and genus 0.  This theorem very clearly 

indicates the relevance of the genus in such questions. 

The key step is due to Rosenbrock: over C, consider the Laplace 

transforms of the solutions to the initial value problem, 

These are elements of the C[sl-module, defined as the kernel of 

the following pencil of matrices, 

[A-sI ,BI : (c" @ tm) @ E [sl + tn b C[s] . G . 9 )  

The theory of such pencils, particularly the problem of equivalence, 

is due to Weierstrass and Kroaecker [see [203) and applies 
a 

remarkably well to the situation at hand. Explicitly, controllability 



1 
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1 r 
of (A,B) is equivalent to right surj ectivity of (5.9) an3 the notion 

{ 

of strict equivalence of pencils is precisely that of feedback 

equivalence of (A,B) with A B )  . Indeed, strict equivalence 

is an equivalence of k[sl-module maps, with the isomorphisms 

independent of s. By writing the definition of strict equivalence 

and comparing degrees, we find that the group of strict equivalence 

of pencils of the form (5.9) is a matrix representation of F! 

Since independence of s connotes projectivity, we follow another 

clue from Kronecker: we projectivize the pencil C5.9). In this 

setting, right SL-jectivity guarantees that we obtain a homogeneous 
1 bundle on A* - (01, and hence an m-bundle on Fk. According to the 

Theorem 5.10. (A,B) 5 (Ar,Br) mod 9 if, and only if, the 

Kronecker sets are the same. 

In fact, Kroneckerrs proof (see [ZO]) is to construct a 

canonical form for the pencil, given the data ( r i ) .  This 

canonical form coincides with the form discovered by P. Brunovsky 

([7]) by other methods. We remark, however, that as an immediate 

application of the construction of this form, pole-placement 

Kronecker recipe, given at the end of Section 3, this burrdle 
m m 

decomposes into a sum 8 8(ri), K- = n. That this bundle, 
i=l i=l 1 

1 * ker[tA-sI,tB], on lPk is isomcrphic to T U, follows at once from 

observability: we simply map [x,u] to [u,Cxl, sending the kernel 

above to the graph of T. Observability is then-just the statement 

that this map is injective. 

Thus, Kroneckerrs classification also shows more, as noted 

in [32 1, for controllable pairs: 



+ 
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becomes trivial. Indeed, the invariants nl ? n2 ? ... ? nm ? 0 are 

much more refined, they give a "generalized pole-placement theorem". 

Theorem 5.11. (Rosenbrock 1 4 2 1 ) .  The invariant factors of A + BF 

can be made arbitrary, subject only to the constraints. 

* 
Another way of interpreting T U as a complete feedback 

invariant 

h0 (v) is 

for the action (5.1) is to count sections. Thus, if f -  

0 1 the dimension of H QP ;V), we have 

* 
On the other hand, evaluating T U at gives, canonically, the I: 

t. * * 
input space. Thus, if 4 :  TIU + T2U is an isomorphism, O in- 1 

I 
0 1 * * 

duces an isomorphism +*: H @P ;T1u) + H~($;T~u), commuting with 1 
ti 

evaluations at a! Thus, $, is a triangular element of GL(n+m,k), - 1 
corresponding to the matrix representation of 4, obtained above. 

This point of view has several applications. For instance, if 

(A,B) to, then 
%,B) 

- the isotropy subgroup for the action 

(5.1) - is just Aut(V), 
kernel of [tA-sI , tB] . 

= dim 

where V is the bundle defined by the 

In particular, 



a formula originally derived by R. Brockett in [ S ] ,  by a more 

explicit representation of 
%,B) 

together with a heuristic 

argument using Young diagrams corresponding to the partitions. 

Based 011 this description, it can also be shown [[S]! that 

connectivity (overR) of the orbits is determined by the Kronecker 

indices mod(2) . 
NOW , Sin, B, has also been written down explicitly by Falb 

and Wolovich in [191, in order to study the action of 9 (and an 

the 

I19 J 

the 

-9 

extension of 9 )  on Cp. Then, one studies, in addition to 

Kronecker set of (A,B), the action of 
%,B) 

on A ~ P .  In 

it is shorn that a moduli space for this action exists, using 

fact that -74 B) is always the semi-direct product of a re 

ductive group with its unipotent radical. 

For the remainder of the section we consider only 9 acting 

on controllable pairs [A,B) and, as in Section 4, we begin to 

introduce parameters. Thus, we suppose [A,B) is an algebraic 

family, defined on an irreducible affine variety X. If (AyB) 

arises from a delay-differential system, it can be shown that we 

can take X = &iN ( 1101) and that equivalence modulo F(R) is not 

just a formal equivalence [[35], [lo]). In this case, one may 

assign geometric data to (AYB), viz. 

N as before, by homogenizing the Rosenbrosk pencil. If X = A , it 

may be shown [[lo]), based on the alternative view presented above, 

thaA V(~,~) is actually a complete invariant for CA,B) under F [ R ) .  
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This situation is an improvement, as quite a bit more is known about 
1 

r ~f deformations of bundles on lP' than about pencils over R. For 
+ I. 

4 example, if the deformation is point-wise trivial, i.e. if the 

Birkhoff-Grothendiech invariants are constant in X, then a 
? 

theorem of C. Hanna ([23]) asserts: 

i 

1 where the Vi are bundles on X, and the Wi are bundles on P . 
Thus, if X = A ~ ,  such a deformation is globally trivial, since Vi 

is necessarily trivial. Applying this to VcA,B), we find: 

Proposition 5.15. If the pointwise Kronecker invariants are constant, 

(A,B) is feedback equivalent to a system defined over k. - 

This has the immediate corollary that such a system ,s coefficient- 

assignzble, i.e. Theorem 5.2 holds. This latter fact generalizes 

to arbitrary R, although the Proposition fails to hold in general 

([12]). It is not hard to show that, in this case, the pointwise 

Kronecker invariants are equal to the ltglobalu Kronecker invariants, 

i.e. the Kronecker invariants computed over the fraction field of R. 

Indeed, in general, there is a Zariski open set on which the pointwise 

invariants are constant and equal to the global Kronecker in- 

variants. What is more, the exceptional values must bear some re- 
m 

lation to the global invariants. Explicitly, if Vi = 8 @(ni), 
m i= 1 

Vt = 6 &j) are bundles on P', then V V t  in the Harder- 
ill 

Narasimhan ordering just in case 



\ a R 
ni 1 ni , for a = 1 ,..., max[m,m'). (5 .l5) 

i=l ill 

Theorem 5.16 [Shatz, [451) The Harder-Narasimhan ordering is upper 
1 semi-continuous in algebraic families of vector bundles on IP . 

This theorem has several applications in probl,m of computing feed- * 

back invariants. Now, any algebraic family of controllable systems i: 

induces a map, 

and Theorem 5.16 thus gives a relation hetween the quotient topology 

on the finite set i 0 / 9  and the Harder-Narasimhan ordering or, 

equivalently, the Rosenbrock ordering of Theorem 5.11. We call the 

ordering induced by specialization, the geometric ordering, while we 

refer to the "ubiquitous orderingt1 as the natural ordering. The 

natural ordering is also present in combinatorics and in number 

theory, where it is studied as an ordering on Yn - the set of all 
partitions of the integer n. Now, it is an unpublished piece of 

folklore, not too hard to prove, that a stronger version of 

Theorem 5.16 holds for algebraic families constructed via system 

theory, vi:. the geometric ordering is dual to the natural ordering. , , . . 
. . 

In, this context, the following theorem ( [81)  is rather remarkable: 
.( 

L 

' C Proposition 5.17. Y is a lattice under the natural ordering. 

We close by indicating extensions of this situation which are 
1 :. 

motivated by control theory but seem likely to contribute some new 



examplesto geometry. First, it is of much more practical significance 

to study the action of the output feedback group; i.e. ~om(k",k~) 

is replaced by ~om(k~, km) in (.iii) . In this setting, the proper 

generalization of Theorem 5.2 is not even conjectured - although a 
counter-example to the dominant morphism approach has been constiucted 

by J.C. Williems . ( [ 4 8 1 ) .  Second, pencils may also be defined by 

control systems governed by partial differential equations. In this 

setting, the generalization of the Posenbrock pencil leads to coherent 
sheaves on lPN but whethe: these all split, as in Grothendieckls 

theorem, is unknown at present. Finally, there are several computations I 
I 

which suggest that, for non-constant coefficient differential equations, I 
the transfer function ought to be, in the scalar input-output case, 

a meromorphic function on a Riemann surface of higher genus. Each 

of these questions deserves further study. 
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